Finite groups have more conjugacy classes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Groups Have More Conjugacy Classes

We prove that for every > 0 there exists a δ > 0 so that every group of order n ≥ 3 has at least δ log2 n/(log2 log2 n) 3+ conjugacy classes. This sharpens earlier results of Pyber and Keller. Bertram speculates whether it is true that every finite group of order n has more than log3 n conjugacy classes. We answer Bertram’s question in the affirmative for groups with a trivial solvable radical.

متن کامل

Finite Groups Have Even More Conjugacy Classes * By

In his paper ”Finite groups have many conjugacy classes” (J. London Math. Soc (2) 46 (1992), 239-249), L. Pyber proved the to date best general lower bounds for the number of conjugacy classes of a finite group in terms of the order of the group. In this paper we strengthen the main results in Pyber’s paper.

متن کامل

Finite groups have even more centralizers

For a finite group $G$‎, ‎let $Cent(G)$ denote the set of centralizers of single elements of $G$‎. ‎In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent‎, ‎then $Gcong S_3‎, ‎D_{10}$ or $S_3times S_3$‎. ‎This result gives a partial and positive answer to a conjecture raised by A‎. ‎R‎. ‎Ashrafi [On finite groups with a given number of centralizers‎, ‎Algebra‎ ‎Collo...

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

FINITE GROUPS WITH FIVE NON-CENTRAL CONJUGACY CLASSES

‎Let G be a finite group and Z(G) be the center of G‎. ‎For a subset A of G‎, ‎we define kG(A)‎, ‎the number of conjugacy classes of G that intersect A non-trivially‎. ‎In this paper‎, ‎we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum Mathematicum

سال: 2017

ISSN: 1435-5337,0933-7741

DOI: 10.1515/forum-2015-0090